
College of Computer Science and information Technology

Computer Programming I

Computer Programming1 Academic Year 2017-2018

1

Course Information
Course Title Computer Programming I
Credits 4 Hours

Teaching Method 3 Hour of Lecture + 2 Hours Lab

Learning Outcomes

Course Description: This course covers fundamentals of algorithms, flowcharts, problem solving,

programming concept, control structures and functions.

Course Outcomes: At the end of this course, students should be able to :

 Develop algorithms to solve "computer-solvable" problems.
 Test algorithms.
 Translate algorithms to C++ programs.
 Debug, run and test C++ "procedural" programs.

Topics
 Problem solving
 Algorithms
 What is programming?
 Basic elements of C++
 General Form of a C++ Program
 Comments and Reserved Words
 Identifiers , Variables and constant
 Data Types
 Arithmetic Operators and Operator Precedence
 Expressions
 Assignment Statement
 Declaring and Initializing Variables
 Input and output
 Control Structures
 Relational Operators and precedence
 Selection: if and if...else
 Compound (Block of) Statements
 Multiple Selections: Nested if
 Selection: Switch case
 Repetition: for Looping Structure
 User-defined functions
 Function declarations and call

o Scope rule of an Identifier

Textbook
1. Problem solving with c++ by Walter Savitch, 7th edition,2009.
2. C++: The Complete Reference by Herbert Schildt, 4th edition, 2003.

Reference

1. A first book of c++ by Gary Bronson, 4th edition, 2012 by Gary Bronson

Computer Programming1 Academic Year 2017-2018

2

Introduction

Computer: is a device capable of performing computations and making logical decisions at speeds
millions and even billions of times faster than human beings.
Programming is the process of writing instructions for a computer in a certain order to solve a
problem.
The computer programs that run on a computer are referred to as software. While the hard
component of it is called Hardware.

Problem solving

Computer Programming1 Academic Year 2017-2018

3

 Problem: A question raised for solution.

 Solving: finding a solution for something.

So, the problem solving is the act of finding a solution to problem
 The result of the problem solving is an algorithm, expressed in English.

 To produce a program in a programming language such as C++, the algorithm is translated

into the programming language.

Program Design Process

Problem Solving Phase:

Analysis and Specification: Understand (define) the problem and what the solution must do.
General Solution (Algorithm): Specify the required data types and the logical sequences of
steps that solve the problem.
Verify: Follow the steps exactly to see if the solution really does solve the problem.

 Implementation Phase:

Solution (Program): Translate the algorithm into a programming language.

Test: Manually check the results. If you find errors, analyze the program and the algorithm to

determine the source of the errors, and then make corrections.

Maintenance phase: Modify the program to meet changing requirements or to correct any

errors that show up while using it.

Example: Find value of the variable output of the equation: Z = (x-y) 2

Analysis and Specification:

1- Understand the question: is the account (حساب(value of the variable Z , therefore must

determine the inputs are x and y, and then finding exact value of the variable Z previous

equation.

2- Analysis stage: a review of the different ways to resolve and choose the most suitable in

terms of speed, ease and accuracy.

Computer Programming1 Academic Year 2017-2018

4

 General solution:

First way: value of the variable Z is calculate equation Z=(x-y)^2

1. set value of each variable x and y

2. find output x-y

3. finding value of variable Z by square of step 2

Second way: value of the variable Z is calculate equation Z = x**2 – 2 *x * y + y **2

 1. Compensation value of each variable x and y

 2. Find square of x (x** 2)

 3. Find value of 2 * x * y

 4. Find the square of y (y ** 2)

 5. Find subtraction the result of step3 from step 2

 6. Finding the value of Z by addition step5 value with step4 value

Analyzed the previous two methods it is clear that the first faster, easier and more

accuracy to reach the solution.

Algorithms
What are algorithms
 Algorithm , It called that name in relation to the Muslim world Abu Ja'far Muhammad ibn Musa al-

Khwarizmi

 In the science of algorithms no fixed rules algorithms to represent the algorithm in this way, but

there are some controls (ضوابط) that must be taken into accountبعين الاعتبار during the

representation, and are:

 not matter(لايهم) use of any type of human languages (Arabic, English, French, ...).

 preferably used words as easy as possible and clear.

 It must be consists of only three structures : sequence, choice, repetition

 Stay away (ابتعد) from the use of words have meaning is limited to a specific programming language.

Algorithm Definition

 An algorithm can be defined as a finite sequence of effect statements to solve a problem. An
effective statement is a clear instruction that can be carried out(تنفيذه).

Algorithm Properties:
 Finiteness: The algorithm must terminate a finite numbers of steps.

 Non-ambiguity: Each step must be clearly defined.

 Effectiveness: The algorithm should solve the problem in a reasonable amount of time.

 Algorithm Language: not matter use of any type of human languages (Arabic, English,

French, ...).

Computer Programming1 Academic Year 2017-2018

5

Why we need the Algorithms

 Documentation of thinking in order to solve problems code.
 Determine the time and storage space that the computer needs to resolve the

problem.
 Contribute (اهمة to speed the discovery of errors before you start thinking in (المس

practical application stage.
 Give us the opportunity (فرصة (to solve problems in different ways.

Algorithm Representation Ways

The Algorithm Representation in many ways like:

 Natural language
 Pseudo code
 Flow Chart

Natural language Pseudo code Flow Chart

1. Is way directly to express the
solution by sentences and
phrases natural languages:
English , Arabic, ..
2. Differ from person to person

1. A clever way to represent
algorithm
2. Similar to human language
not considered a programming
language.

3. Easily converted for different

programming languages.

1. Symbolic representation to the
algorithm.
2. Do not need to express your
own language
3. It a lot easier

Flowcharts
 A flowchart is a graphical representation of an algorithm. Flowcharts are drawn using symbols. The

main symbols used to draw a flowchart are shown in the following:

Computer Programming1 Academic Year 2017-2018

6

 Example 1: Write an algorithm that Find the average of the three numbers.

By Natural language By Pseudo code By Flow Chart

1. Start.
2. Read the three numbers.
3. Calculate the sum of the

three numbers.
4. Calculate the average by

divide the sum by three.
5. Output the average
6. End.

 Method1
1. start.
2. input x, y and z.
3. sum= x + y + z.
4. avg= sum /3.
5. output avg.
6. end.

Method2
1. start.
2. input x, y and z.
3. avg= (x + y + z) / 3.
4. output avg.
5. end.

Example 2: Write an algorithm that outputs the rectangle area given width and length.

By Pseudo code By Flow Chart

1. Start

2. output " Input width and length -> "

3. input length ,width

4. area = length* width

5. output “Area = " , area

6. end

Example 3: Write an algorithm that can swapping between two inputs variables.

Computer Programming1 Academic Year 2017-2018

7

By Pseudo code By Flow Chart

1. start

 2. output " input two numbers :- "

 3. input a , b

 4. temp = a

 5. a = b

 6. b = temp

 7. output " After swapping "

 8. output "a= ", a, "b= “, b

 9. end

Control Structure
 Any algorithm can be written using only three structures (together, individual), Sequence, choice,
repetition, the following table describe thee representation of these structure by flowchart .

Computer Programming1 Academic Year 2017-2018

8

Example 4: Write algorithm to print “pass” if student grade greater than 60 otherwise prints “fail”

By Natural language By Pseudo code By Flow Chart

1. start
2. input student grade
3. If students grade is greater than 60
 Output "passed“
 else
 output "failed“
4. end

 1.start
2. input grade
3. if grade > 60 then
 Output “passed”
 Else
 Output ”failed”
4. end

Example 5: Write an algorithm that can find the large number between two inputs numbers.

Answer:

By Pseudo code By Flow Chart

1. start

2. output " input two numbers :- "

3. input a , b

4. max = a

5. if b > a then max=b

6. output " Max= “, max

7. end

Computer Programming1 Academic Year 2017-2018

9

Example 6: Write an algorithm can find summation of N numbers.

Answer: By Pseudo code

1. start

2. output " Number N :- "

3. input n

4. counter = 0 , sum= 0

5. if counter >= n then goto Step 11

6. counter = counter + 1

7. output " X= “

8. input x

9. sum = sum + x

10. goto Step5

11. output “Sum= “, sum

12. end

by flowchart

Home work:
1. Write an algorithm that can calculate the number of students who succeed in computer

programming I exam.

2. Write an algorithm can calculate the following question:

z= x+y+2.

3. Write an algorithm can calculate the following question:

Computer Programming1 Academic Year 2017-2018

10

𝐙 = {
𝐱 + 𝟓 𝐱 ≥ 𝟎

𝐱 − 𝐲 + 𝟐 𝐱 < 0

4. Write an algorithm can calculate t he following question:

𝐙 = {
𝐱 + 𝟓 𝐱 > 𝟎
𝟕 𝐱 = 𝟎
𝐱 ∗ 𝐲 𝐱 < 0

5. Write an algorithm to input a number X which represents the number of seconds. Then output the
number of days, hours, minutes and seconds. For example, if X = 105733 Days = 1, Hours = 5,
Minutes = 22 and seconds = 13.

6. Write an algorithm to compute and outputs the value of y:

𝒚 = 𝒙𝟐 ∗ 𝟏𝟎 − 𝟐
7. Draw flowchart to the Written Algorithm that determine if a number is positive or negative. If

positive output "POSITIVE", else output "NEGATIVE".

 step1: start
 step2: output " input number -> "
 step3: input x
 step4: if (X >= 0) then
 output "POSITIVE"
 else
 output "NEGATIVE"
 step5: end

8. Draw flowchart to the Written Algorithm that determine if the number is zero then output “ZERO”
 step1: start
 step2: output " input numbers -> "
 step3: input x
 step4: if (x > 0) then
 output "POSITIVE"
 else if (x = 0) then
 output "ZERO"
 else
 output "NEGATIVE"
 step5: end

9. Write an algorithm that inputs a student’s score outputs his grade according to the following:
Score Grade
0 – 59 F
60 - 69 D
70 – 79 C
80 – 89 B
90 – 100 A

10. Write an algorithm that inputs a number and outputs “ODD” if the number is odd and “EVEN” if
the number is even. (Note:: Zero is even)

Computer Programming1 Academic Year 2017-2018

11

11. Write an algorithm to input 2 numbers and outputs the minmum number.

12. Write an algorithm can find summation of the positive and the negative from N input numbers.

13. Draw flowchart to the written Algorithm that inputs and outputs the sum of n numbers.
step1: start
step2 : output "input n ->"
step3: input n
step4: sum = 0
step5 : for (i=1; i<= n; i=i+1)
step6 : output "input number --> "
step7: input x
step8: sum = um + x
step9: end of step 5
step10: output "sum = " , sum
step11: end

14. Draw flowchart to the written Algorithm that find the average of N input numbers.

step1: start
step2 : output "input n ->"
step3: input n
step4: sum = 0
step5 : for (i=1; i<= n; i=i+1)
step6 : output "input number --> "
step7: input x
 step8: sum = um + x
step9: end of step5
step10: avg = sum / n
step11: output "avg = " , avg
step12: end

15. Draw flowchart to the written Algorithm that inputs a number N and computes and outputs the
value of S :

𝑠 = ∑ 𝑖

𝑛

𝑖=1

 step1: start
 step2: s = 0
 step3: output " input n ->"
 step4: input n
 step5: for (i=1;i<=n; i=i+1)
 step6: s = s + i
 step7: end of step 5
 step8: output "sum = ", s
 step9: end

Computer Programming1 Academic Year 2017-2018

12

16. Write an algorithm that calculate the value of S:

𝐒 = ∑ 𝐱

𝐧

𝐢=𝟏

17. Write an Algorithm that inputs a number N and computes and outputs the value of s:

𝑠 = ∑ 𝑥2

𝑛

𝑖=1

18. Write an algorithm that inputs a number TOTAL and a sequence of numbers. The algorithm stops

inputting numbers when the sum of the numbers exceeds TOTAL and then outputs how many
numbers were input.

19. Write an algorithm that inputs a sequence of N numbers and outputs the following:
 A) Their sum.
 B) Their average.
 C) The number of Negative numbers, Positive numbers and Zeros.

20. Write an algorithm that inputs a sequence of numbers ending with a negative number and outputs
the following: A) Their sum. B) Their average.

21. Write an algorithm that inputs a number n and outputs n!

 (Hint: N! = 1*2*3*…..*(N-1)*N).

22. Write an algorithm that inputs an even positive number N and outputs the 10 even numbers
following it.

23. Write an algorithm that inputs a positive number N and outputs the 10 even numbers following it.
(We don’t know if N is even or odd)

24. Write an Algorithm to input a number TOTAL and compute and output the value of S. The
algorithm should stop when S > TOTAL. Also output how many terms of S were used:

𝑠 = ∑ 1/𝑖

𝑛

𝑖=2

25. Write an Algorithm that inputs a number N and computes and outputs the value of

𝑠 = ∑ 𝑥𝑖

𝑛

𝑖=1

26. 14. Write an algorithm that inputs a number X and output the value of S:
𝑠 = 1 − 𝑥 + 𝑥2 − 𝑥3 + 𝑥4 − ⋯

A) For N terms
B) Until S > K (K should be input as input)

Computer Programming1 Academic Year 2017-2018

13

27. The following series is used to compute the value of s:

𝑠 = 4 −
4

3
+

4

5
−

4

7
+

4

9
…

28. Write an algorithm to output the value of s by:
A) Finding the value of the series after 20 terms.
B) Computing si until value of (si – si-1)<0.0001

29. Write an Algorithm that computes and outputs the value of S:

𝑠 =
1

2
+

2

3
+

3

4
+

4

5
+ ⋯ +

99

100

30. Write an Algorithm that computes and outputs the value of S:

𝑠 = 1 −
1

3!
+

1

5!
−

1

7!
+

1

9!
…

A) For N terms B) Until (Sumi – Sumi-1) < 0.0001

31. Write an algorithm that computes and outputs the value of S:

𝑠 = ∑
𝑥𝑖

𝑥!

𝑛

𝑖=1

32. Write an algorithm that computes and outputs the value of S:

𝑠 = ∑
𝑥2𝑖

(𝑖 − 1)!

𝑛

𝑖=1

33. Write an algorithm to sums all the even numbers between 1 and 20 and then displays the sum.

 Draw flowchart for all the exercises.

Computer Programming1 Academic Year 2017-2018

14

What is programming?

 Programming: is the process by which to determine how to deal with the data entered into

the computer for the desired results.

 Computer Programming: is the process of providing(تزويد) the commands to computer to

perform a specific task in a certain way .

 Programming Language : it’s a sequence of instructions that convert An Algorithms (in

human language) to the A program (computer Language) .
 Programming language can be classified into:

 Low Level Language : in this type of languages the programmer can write programs

must knowing the details of how the computer work, storage locations and details

of the device like machine code and Assembly language, the fallowing example of

adding the number (24 , 42) by these language .

 High Level Language: in this type of languages the programmer can write programs without the

knowing details of how the computer work, storage locations and details of the device , like

C++ , Java , …… , the fallowing example show part of program in C++ language .

Any Program in High Level language passing this stages

Program interpreter/compiler machine language

Input Data Processing Result (output)

(output)

 Programming

void main(){
int x, y, z;

x = 1;

y = 12;

z = x + y ;}

Computer Programming1 Academic Year 2017-2018

15

 Difference between Compiler and Interpreter

No Compiler Interpreter

1 Compiler Takes Entire program as input Interpreter Takes Single instruction as input .

2 Intermediate Object Code is Generated No Intermediate Object Code is Generated

3 Conditional Control Statements are Executes faster Conditional Control Statements are Executes slower

4
Memory Requirement : More (Since Object Code is
Generated)

Memory Requirement is Less

5 Program need not be compiled every time
Every time higher level program is converted into lower level
program

6 Errors are displayed after entire program is checked Errors are displayed for every instruction interpreted (if any)

7 Example : C Compiler Example : BASIC

Basic elements of C++

 C++ is a general-purpose programming language. C++ was derived from C, and is largely

based on it.

 General Form of a C++ Program

Programming language is a set of rules, symbols, special words

 rules(syntax) – specifies legal instructions

 Symbols - special symbols (+ - * ! …)

 Special Word (reserved words) (int, float, double, char …)

 A C++ program is a collection of one or more subprograms (functions)
 Function

o Collection of statements

o Statements accomplish a task

 Every C++ program must contain a function called main

Program structure in C++

int main ()
 {
 .
 .
 return 0;
 }

 void main()
 {
 .
 .
 .
 }

Function body

(Statements)

Computer Programming1 Academic Year 2017-2018

16

Where
 The int specifies that it returns an integer value
 The void specifies there will be no arguments

Example: Program in c++ to display "Welcome In Computer Programming Course"

#include <iostream.h>

Lines beginning with a hash sign (#) are directives for the preprocessor.
They are not regular code lines with expressions but indications for the

compiler's preprocessor. Preprocessor directives must be specified
in their own line and do not have to end with a semicolon (;).

In this case the directive #include <iostream.h> tells the preprocessor to
include input-output library in C++ .

int main() - void main()
Program execution begins with the main function. The entry point of

every C++ program is main().

Curly brackets { }

 indicate the beginning and end of a function, which can also be called
the function's body. The information inside the brackets indicates
what the function does when executed.

;

In C++, the semicolon is used to terminate a statement. Each statement
must end with a semicolon. It indicates the end of one logical
expression.

Cout
is used in combination with the insertion operator, <<, to insert the data that
comes after it into the stream that comes before.

Statements

A block is a set of logically connected statements, surrounded by opening
and closing curly braces. For example
{

 cout << "Welcome In Computer programming course ";

 return 0;

 }

You can have multiple statements on a single line, as long as you
remember to end each statement with a semicolon. failing to do so will
result in an error.

return 0 ;
 The line return 0; terminates the main() function and causes it to return the value 0
to the calling process. A non-zero value (usually of 1) signals abnormal termination

Note: The program has been structured in different lines in order to be more readable, but in
C++, we do not have strict rules on how to separate instructions in different lines.

Program Result :
Welcome In Computer Programming Course

#include <iostream.h>
 int main()
 {

Welcome In Computer cout <<"
"; Programming Course

 return 0;
 }

#include <iostream.h>
 void main()
 {

Welcome In Computer cout <<"
"; Programming Course

 }

Computer Programming1 Academic Year 2017-2018

17

Exercise: Write a program in C++ to display :

 Welcome In IS Dep.

I'm a C++ course

First Stage

Group A

Comments

 Comments are explanatory statements(تعليمات توضيحية) that you can include in the C++ code to
explain what the code is doing. The compiler ignores everything that appears in the comment, so
none of that information shows in the result. There are two types of comment:

Comment type Description Example

Single-line comment
// line comment

#include <iostream.h>

int main()
{
// print "Welcome In IS Dep. ".
 cout << "Welcome In IS Dep. ";
 return 0;
}

Multi-Line Comments

/* block comment */

include <iostream.h>

int main()
{
 /* Welcome In IS Dep */

 /* Example for display
 Welcome In IS Dep
 */

 cout << "Welcome In IS Dep. ";
 return 0;
}

Note: Comments can be written anywhere, and can be repeated any number of times throughout

the code. Within a comment marked with /* and */, // characters have no special meaning, and

vice versa. This allows you to "nest" one comment type within the other.

 Reserved Words (keywords)
Reserved words have a predefined meaning in C++ and that you cannot use as names for variables or
anything else.

Computer Programming1 Academic Year 2017-2018

18

Note: Keep in mind that the case of the keywords is significant. C++ is a case-sensitive language, and it

requires that all keywords be in lowercase. For example, RETURN will not be recognized as the keyword
 return.

 Identifiers
 Any item might define in a program is called an identifier.

Rules for identifiers

 must begin with letter or the underscore _

 followed by any combination of numerals, letters or underscore

 recommend (نوصي) meaningful identifiers

 Another rule that you have to consider when inventing your own identifiers is that they cannot

match any keyword of the C++ language nor your compiler's specific ones, which are reserved

keywords (keyword).

Here are some correct and incorrect identifier names:

Correct Incorrect explain way incorrect

Count 1count ?

test23 hi!there ?

high_balance high...balance ?

_name _n ame ?

 Note: The C++ language is a "case sensitive" language. That means that an identifier written in
capital letters is not equivalent to another one with the same name but written in small letters. Thus,
for example, the RESULT variable is not the same as the result variable or the Result variable.

Use Meaningful Names

 Variable names and other names in a program should at least hint at the meaning or use of the
thing they are naming. It is much easier to understand a program if the variables have meaningful
names. Contrast the following: x = y * z;
With the more suggestive: distance = speed * time;

 The two statements accomplish the same thing, but the second is easier to understand.

Data Types

 When programming, we store the variables in our computer's memory, but the computer has
to know what kind of data we want to store in them, since it is not going to occupy the same
amount of memory to store a simple number than to store a single letter or a large number,
and they are not going to be interpreted the same way.

 The memory in our computers is organized in bytes. A byte is the minimum amount of memory
that we can manage in C++.

 In addition, the computer can manipulate more complex data types that come from grouping
several bytes, such as long numbers or non-integer numbers. In the following figure and table
shown summary of the basic fundamental data types in C++, as well as the range of values that
can be represented with each one:

Computer Programming1 Academic Year 2017-2018

19

Variables
 Programs manipulate data such as numbers and letters. C++ and most other programming

languages use programming constructs known as variables to name and store data.

 Creating a variable reserves a memory location, or a space in memory for storing values.
The compiler requires that you provide a data type for each variable you declare.

 Variables like small blackboards , can be written and then can be changed.

 The number or other type of data held in a variable is called its value .

 All integer, floating-point, and other values used in a program are stored in and retrieved
from the computer’s memory. Conceptually, locations in memory are arranged like the

Computer Programming1 Academic Year 2017-2018

20

rooms in a large hotel, and each memory location has a unique address, like room numbers
in a hotel .

Variable Declarations

 All variables must be declared before they are used. The syntax for variable declarations is as

follows:

Syntax Type_name variable_name1 , variable_name2, ……… ;

Example int count , number_of_students ;

 double distance ;
Where:
type_name : must be a valid data type
 Variable_Name_1, Variable_Name_2, . . . ; or (variable_list) : may consist of one or more Identifier
names separated by commas (,). Each Variable name must follow the rules of identifier name.

Example for variable declaration using some of data type
Integer declaration :
 int x ;
 long int y ; short int z;

Floating Point Numbers declaration:
float x1 ;
double y1;
long double z1;

Character declaration :
 char ch ;

Boolean declaration :
bool b1 ;// true or flase

 Exercise:

Example : To see what variable declarations look like in action within a program, we are going to see
the C++ code of the example about your mental memory :

valid variable declaration Not valid Explain way not
valid ?

int a, b, c; int a; b,c ; ?
int a;
int b;
int c;

int a;
int b ,
 int c;

?

Computer Programming1 Academic Year 2017-2018

21

// operating with variables
#include <iostream.h>
int main ()
{
 // declaring variables:
 int a, b;
 int result;
 // process:
 a = 5; b = 2;
 a = a + 1;
 result = a - b;
 // print out the result:
 cout << result;
 // terminate the program:
 return 0;
}

Explain the execution steps of the program :

 Scope of variables
 A variable can be either of

 Global : A global variable is a variable declared in the main body of the source code, outside all
functions.

 Local: while a local variable is one declared within the body of a function or a block.

Note: The scope of local variables is limited to the block enclosed in braces ({}) where they are
declared. This means that if another function existed in addition to main, the local variables declared
in main could not be accessed from the other function and vice versa.

Initialization of variables
When declaring local variable, its value is by default undetermined. But you may want a variable to

store a value at the same moment that it is declared. In order to do that, you can initialize the variable.
 The syntax for initialization variables is as follows:

type identifier = intial_value;

vaild examples
 int a= 5 ;
 int a=b=c= 0 ;
 int a=5 , d, f=8;

 Not valid examples
int a=5 ; b= 5;
int a= b=0, int c= 0;
 int a=5 , d; f=8;

Way ???

#include <iostream.h>
 int a, b;
 int main ()
 {
 int result;
 a = 5; b = 2;
 a = a + 1;
 result = a - b;
 // print out the result:
 cout << result;
 // terminate the program:
 return 0; }

Global variables

 Local variable

Computer Programming1 Academic Year 2017-2018

22

// initialization of variables
#include <iostream.h>
int main ()
{
 int a=5; // initial value = 5
 int b=2; // initial value = 2
 int result; // initial value
 a = a + 3; result = a - b;
 cout << result;
 return 0;
}

 Result:???

Constants
 Constants refer to fixed values that the program cannot alter. Constants can be of any of the basic
data types. The way each constant is represented depends upon its type. Constants are also called literals.

Type examples

Integer Numerals
1776
707
-273

Floating-Point Numerals

3.14159
6.02e23 // 6.02 x 10^23
1.6e-19 // 1.6 x 10^-19
3.0

Characters
'z'
'p'

Strings
"Hello world"
"How do you do?"

Bool There are only two valid Boolean values: true and false.

Declared constants (const)
 With the const prefix you can declare constants with a specific type in the same way as you would do
with a variable except that their values cannot be modified after their definition :

const int pathwidth = 100;
const float pi=3.14 ;

Defined constants (#define)

You can define your own names for constants that you use by using the #define Preprocessor directive.
Its Format is:

define identifer value

Computer Programming1 Academic Year 2017-2018

23

Example :

// defined constants: calculate circumference

#include <iostream.h>

#define PI 3.14159
#define NEWLINE '\n'

int main ()
{
 double r=5.0; // radius
 double circle;

 circle = 2 * PI * r;
 cout << circle;
 cout << NEWLINE;

 return 0;
}

 result :

 31.4159

Operators

 Once we know of the existence of variables and constants, we can begin to operate with them. For that
purpose, C++ integrates operators.

Assignment (=) : The assignment operator (assignment statement) assigns a value to a variable.

Its general syntax as follow :

 The lvalue has to be a variable whereas the rvalue can be either a constant, a variable, the

result of an operation or any combination of these (expression) .

 The most important rule when assigning is the right-to-left rule: The assignment operation
always takes place from right to left, and never the other way.

 Arithmetic expression is any combination of simple value, function call, binary expression, and

unary expression.
 Where :

 Simple value : constant number , string constant , character constant , identifier.

 Unary operator (العوامل الاحادية) are (+, - ,-- , ++).

Lvalue Rvalue

Computer Programming1 Academic Year 2017-2018

24

Example1 (arithmetic expression)

1. double a= 10 + y / 5 – m1;

2. double a= (x + 2) / y * 5 * 9;

3. int a= y*10+(2-1);

4. int z ; z= sin(45) * 34 ;

5. float m*= m + x ++ ;

 Example2

// assignment operator

#include <iostream.h>
int main ()
 {

 int a, b;
 a = 10;
 b = 4;
 a = b;
 b = 7;

 cout << "a:";
 cout << a;
 cout << " b:";
 cout << b;
 return 0;
}

Result: ? ?

the assignment operation can be used as the rvalue (or part of an rvalue) for another assignment
operation. For example: a = 2 + (b = 5); is equivalent to:

 b = 5;
 a = 2 + b;

The following expression is also valid in C++: a = b = c = 5; It assigns 5 to the all the three
variables: a, b and c.

Arithmetic operators (+, -, *, /, %)
The five arithmetical operations supported by the C++ language are:

+ Addition

- Subtraction

* Multiplication

/ Division

%
Modulo
(remainder of an integer division)

 Arithmetic Operators require two variables to be evaluated.
 Modulo is the operation that gives the remainder of a division of two values.
 For example, if we write: a = 11 % 3; // a=2

Computer Programming1 Academic Year 2017-2018

25

 Compound assignment (+=, -=, *=, /=, %=)
 When we want to modify the value of a variable by performing an operation on the value currently
stored in that variable we can use compound assignment operators:

Expression Is equivalent to

 x += y ; x = x + y;

a-= 5; a = a - 5 ;

price *=units + 1 ; price =price * (units + 1) ;

a /= b; a = a / b;

c %= 2; C = c % 2;

 Example :
#include <iostream.h>
int main ()
{
 int a, b=3;
 a = b;
 a+=2;
 cout << a;
 return 0;
 }

Result: ??

Increase and decrease (++, --)

 Shortening even more some expressions, the increase operator (++) and the decrease operator (--)
increase or reduce by one the value stored in a variable (its unary operation) . They are equivalent to +=1
and to -=1, respectively. Thus:

c++;
c+=1;
c=c+1;

c--;
c-=1;
c=c-1;

 Note:
 A characteristic of this operator is that it can be used both as a prefix and as a suffix. That means

that it can be written either before the variable identifier (++a) or after it (a++).

 Although in simple expressions like a++ or ++a both have exactly the same meaning, in other
expressions in which the result of the increase or decrease operation is evaluated as a value in an
outer expression they may have an important difference in their meaning:
 In the case that the increase operator is used as a prefix (++a) the value is increased before

the result of the expression is evaluated and therefore the increased value is considered in the
outer expression.

 in case that it is used as a suffix (a++) the value stored in a is increased after being evaluated
and therefore the value stored before the increase operation is evaluated in the outer
expression. Notice the difference:

Are all equivalent Are all equivalent

Computer Programming1 Academic Year 2017-2018

26

Note::

 In Example 1, B is increased before its value is copied to A.
 In Example 2, the value of B is copied to A and then B is increased.

 Other Examples

Automatic type conversion

If an expression contains operands of different types, an (to the type which is highest in the
following hierarchy) is performed. Automatic type conversion

Some of binary operation yield implicit type conversions

Relational and equality operators (==, !=, >, <, >=, <=)

 In the term relational operator, relational refers to the relationships that values can have with one
another. In the term logical operator, logical refers to the ways these relationships can be connected. We
can use the relational and equality operators. The result of a relational operation is a Boolean value that
can only be true or false, according to its Boolean result.

Note: C++ fully supports the zero/non-zero concept of true and false.

Computer Programming1 Academic Year 2017-2018

27

However, it also defines the bool data type and the Boolean constants true and false.

Here there are some examples:

Of course, instead of using only numeric constants, we can use any
valid expression, including variables. Suppose that a=2, b=3 and
c=6,

(7 == 5) // evaluates to false.

(5 > 4) // evaluates to true.

(3 != 2) // evaluates to true.

(6 >= 6) // evaluates to true.

(5 < 5) // evaluates to false.

(a == 5) // evaluates to false since a is not equal to 5.

(a*b >= c) // evaluates to true since (2*3 >= 6) is true.

(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is false.

((b=2) == a) // evaluates to true.

Logical operators (! , && , ||)

The Operator ! : is the C++ operator to perform the Boolean operation NOT, it has only one operand,
located at its right, and the only thing that it does is to inverse the value of it, producing false if its operand
is true and true if its operand is false. Basically, it returns the opposite Boolean value of evaluating its
operand.

Example

!(5 == 5) // evaluates to false because the expression at its right (5 == 5) is true.
!(6 <= 4) // evaluates to true because (6 <= 4) would be false.
!true // evaluates to false
!false // evaluates to true.

The logical operators && and || : are used when evaluating two expressions to obtain a single relational
result. The operator && corresponds with Boolean logical operation AND. This operation results true if
both its two operands are true, and false otherwise.

Computer Programming1 Academic Year 2017-2018

28

The operator ||: corresponds with Boolean logical operation OR. This operation results true if either one
of its two operands is true, thus being false only when both operands are false themselves.

 Example:

((5 == 5) && (3 > 6)) // evaluates to false (true && false).

((5 == 5) || (3 > 6)) // evaluates to true (true || false).

Conditional operator (?)

 The conditional operator evaluates an expression returning a value if that expression is true and a
different one if the expression is evaluated as false.
Conditional operator which can be used to replace if...else statement.
Its format is:

condition? result1 : result2

If condition is true the expression will return result1, if it is not it will return result2.

Example:

(7==5)? 4 : 3 // returns 3, since 7 is not equal to 5.

7==5+2 ? 4 : 3 // returns 4, since 7 is equal to 5+2.

5>3 ? a : b // returns the value of a, since 5 is greater than 3.

a>b ? a : b // returns whichever is greater, a or b.

// conditional operator

#include <iostream>

int main ()
 {
 int a,b;

 a=10;
 b= (a == 1) ? 20: 30;

 cout << b;
 return 0;

 }

Result ?

Computer Programming1 Academic Year 2017-2018

29

Precedence of operators

 When writing complex expressions with several operands, we may have some doubts about which
operand is evaluated first and which later. For example, in this expression:

a = 5 + 7 % 2

We may doubt (شك) if it really means:

a = 5 + (7 % 2) // with a result of 6, or
 a = (5 + 7) % 2 // with a result of 0

The correct answer is the first of the two expressions, with a result of 6. There is an established order with
the priority of each operator, and not only the arithmetic ones (those whose preference come from
mathematics) but for all the operators which can appear in C++. From greatest to lowest priority, the
priority order is as follows:

 All these precedence levels for operators can be manipulated or become more legible by removing
possible ambiguities using parentheses signs (and), as in this example:

a = 5 + 7 % 2; can be written either as a = 5 + (7 % 2); or a = (5 + 7) % 2;

Examples

1. x = 3 + 4 + 5;
2. z *= ++y + 5;
3. a || b && c || d;

	Difference between Compiler and Interpreter
	Example: Program in c++ to display "Welcome In Computer Programming Course"
	#include <iostream.h>
	void main()
	{
	cout <<" Welcome In Computer Programming Course ";
	}
	#include <iostream.h>
	int main()
	{
	cout <<" Welcome In Computer Programming Course ";
	return 0;
	}

